
INTERACTIVE MACHINE LEARNING FOR WORD SPOTTING ON
DAMAGED HANDWRITTEN DOCUMENTS

By
Jack Bandy

Director of Project: Brent Seales

Director of Graduate Studies: Miroslaw Truszczynski

Date: April 18, 2018

MASTER’S PROJECT

Jack Bandy

The Graduate School
University of Kentucky

2018

INTERACTIVE MACHINE LEARNING FOR WORD SPOTTING ON
DAMAGED HANDWRITTEN DOCUMENTS

MASTER’S PROJECT

A document submitted in partial
fulfillment of the requirements for
the degree of Master of Science in
the College of Arts and Sciences at

the University of Kentucky

By
Jack Bandy

Lexington, Kentucky

Director: Dr. Brent Seales, Professor of Computer Science
Lexington, Kentucky 2018

Copyright c� Jack Bandy 2018

TABLE OF CONTENTS

Table of Contents . iii

List of Figures . iv

List of Tables . v

Chapter 1 Introduction . 1
1.1 Related Work . 1
1.2 Motivation . 5
1.3 Contributions . 6

Chapter 2 Methodology . 7
2.1 Preprocessing . 7
2.2 Convolutional Autoencoder . 10
2.3 Word Retrieval . 11
2.4 Providing Labels . 11
2.5 Evaluation . 12

Chapter 3 Results . 14
3.1 Datasets . 14
3.2 Basic Word Spotting . 15
3.3 Classification on Damaged Datasest 15
3.4 Reconstruction Results . 16

Chapter 4 Conclusion . 17
4.1 Findings . 17
4.2 Challenges and Limitations . 18
4.3 Future Work . 18

Bibliography . 19

Vita . 24

iii

LIST OF FIGURES

1.1 A schematic diagram from [1] for semi-automated transcription, designed
especially for resolving ambiguity. Although resolving ambiguity is not
the focus of my project, this diagram depicts a collaborative framework
between machine learning and human annotation. 6

2.1 A sample of the original photographs of the Wycli↵e New Testament
Manuscript. In the preprocessing phase, these images must be aligned
and cropped into separate columns. 8

2.2 The projection profile used to segment lines of text. To generate words,
an identical process . 8

2.3 Illustrating the need for tilt during the line segmentation phase. Although
the column has been aligned vertically, perfectly horizontal approxima-
tions (above) for line segmentation result in cuto↵ words. Tilted lines
generated by the RANSAC algorithm fit the slant of the text. 9

2.4 An original word image from the George Washington dataset (left), and
the same word after applying damage blocks to simulate ink deterioration
(right). 9

2.5 A diagram of the convolutional autoencoder. The thin blue layers at
the far left and far right represent the input and output, respectively.
Teal blocks represent convolutional filters, white blocks represent pooling
layers, and yellow blocks represent upsampling layers. 11

3.1 Sample lines from the George Washington dataset (left), the Parzival
dataset (middle), and the Wycli↵e dataset (right). 15

3.2 Sample word images from the George Washington dataset (left), the Parzi-
val dataset (middle), and the Wycli↵e dataset (right). 15

3.3 On the top, samples of word images after simulated damage, from the
George Washington dataset (left) and the Parzival dataset (right). Re-
spective output from the reconstructive CAE is shown on the bottom. . . 16

iv

LIST OF TABLES

3.1 Summary table of the datasets used for evaluation. Note the Wycli↵e test
set is a small subset of the full Wycli↵e New Testament. 14

3.2 Word Spotting Results . 15
3.3 Results for “Damaged” Datasets . 16
3.4 Results for Reconstructed Data . 16

v

Chapter 1 Introduction

This project deals with word spotting for historical documents, especially documents
that have been physically damaged.

Extensive research exists in word spotting and word recognition on printed as
well as handwritten documents. For modern data, the input to these problems is
remarkably clean, but historical data, such as the data considered in this project,
presents challenges that are not often considered in related literature. For example,
although many projects for handwritten word recognition consider variations caused
by penmanship, very few consider variations caused by physical damage.

This chapter reviews existing literature related to this problem, motivates an
alternative approach, and outlines the contributions of the project.

1.1 Related Work

For several decades, researchers have been developing methods for automated char-
acter and word recognition. These methods take some photograph(s) of printed or
handwritten text as input, and produce a transcript of that text as output. This
section provides a brief summary of methods which have influenced the course of this
research area, including advances in handwriting recognition, printed text recognition,
and handwritten word spotting.

The nomenclature for these related tasks can be somewhat inconsistent in the
literature. For the purposes of this paper, “handwriting recognition” di↵ers from
“handwritten word spotting” in that the former aims to create full transcriptions
while the latter locates and/or recognizes instances of a given word within a document.
“Printed text recognition,” although it uses many of the same methods, refers to
projects that examine machine-printed texts. As detailed in the following sections,
the fields have converged at this point in time, but a distinction is necessary for the
previous decades of work.

Text Recognition

From a technical standpoint, automatic text recognition is the task of turning an
image into the text within the image. “Text recognition” here refers to recognizing
printed texts, not handwritten texts, which prompts several convenient assumptions.
Namely, one can assume that all occurrences of a given character will be identical in
shape and size. Because of this assumption, researchers could attempt letter-for-letter
recognition on documents, a process known as object character recognition (OCR).

OCR on scans of printed documents has seen success since as early as the 1980s
[2, 3], with methods detailed as early as the 1950s [4]. A survey from 1996 [5] notes
that, due to the consistency of letter shapes and sizes in question, simple techniques
such as projection histograms, template matching, zoning, and geometric moments
produced remarkable accuracy.

1

As early as 1987, font and size constraints were no longer needed. The authors
of [6] demonstrated a system that accurately classified mixtures of dissimilar fonts of
varied sizes. Gradually, more and more constraints were eliminated. After [6] removed
the need for font and size assumptions, the race was on to eliminate constraints such as
alignment, color, contrast, and more. Eventually, the task of printed text recognition
was one that could be done “in the wild,” [7, 8, 9] with essentially no assumptions
about the nature of the text. Especially important for “in the wild” recognition was
eliminating the segmentation step, as in [10], such that regions of text could be found
without a processing phase devoted to localization. The ideal system, then, would
be able to recognize text in any image in which a human could see text without any
additional input.

An important benchmark dataset for text recognition “in the wild” is Street View
Text (SVT) [11]. SVT was harvested using pictures from Google Street View, and
thus contains a heterogeneous collection of word images with a variety of fonts, colors,
and backgrounds. (Despite the variations, word images in this set do not include
handwritten characters.) The SVT dataset was released in 2010, and by 2012, [8]
used it to train a neural network that achieved state-of-the-art performance for both
character recognition and word recognition. The high degree of accuracy was achieved
via unsupervised feature learning and convolutional neural networks.

In fact, even before 2012, many researchers realized that convolutional neural
networks (CNNs) were ideal for recognizing the shapes of di↵erent letters and words
[12, 13], and the trend only became stronger after successes like [8]. CNNs o↵ered
exceptional performance with lower computational costs than traditional, “fully-
connected” neural networks. Today, many robust approaches to text recognition
exist via CNNs [8, 14, 9].

Handwriting Recognition

Although modern methods for printed text recognition overlap methods for hand-
writing recognition, especially with CNNs for “in-the-wild” handwriting recognition,
the convergence happened after many years of parallel research, so it is helpful to
examine both histories.

Handwriting recognition can be divided into two major categories, “online” hand-
writing recognition and “o✏ine” handwriting recognition. In the former, software
tracks the location of a writing utensil as a user moves it across some surface to
produce letters and words, and the location details of the utensil help reveal the
intended writing. For example, UNIPEN [15], a benchmark dataset for online hand-
writing recognition, includes “pen trajectory” data that specifies when and where the
pen touched down and lifted up, as well as the coordinates for the path of the pen.

More relevant to this project is the task of o✏ine handwriting recognition, in
which the input comprises only a picture of the handwriting and no additional infor-
mation about its creation. A canonical example of the text recognition task is the
MNIST dataset [16]. MNIST consists of grayscale images of individual handwritten
digits, 0 to 9, and the objective is to classify each image by the digit written inside of

2

it. Machine learning researchers have been using this task as a benchmark for several
decades [17], with error rates well below 1% since 2003 [18].

Projects using MNIST and similar datasets are premised upon many constraints,
although they di↵er from those made for printed text. Rather than assuming consis-
tency in size and shape, the projects assume a very small vocabulary or character set,
which can be accurately recognized with proper alignment and segmentation. As soon
as a text ventured outside those constraints (misspelled words, new characters, etc.),
the system would falter. Even moderately successful recognition on unconstrained
datasets did not exist until the early 2000s.

This changed with the use of hidden Markov Models (HMMs) [19, 20, 21]. HMMs
utilized statistical models built for specific languages to narrow down the classifica-
tions for a given letterform. A common example in english is that when a “q” occurs,
a well-trained HMM will know to expect a “u” to follow. With HMMs, character and
word recognition accuracies improved to over 85% (varying with respect to the test
corpus) on “unconstrained” texts.

Although the texts were nominally unconstrained datasets, many demonstrations
were still using the IAM dataset [22], an ad-hoc database for researchers. In other
words, truly unrestricted handwriting recognition was still a long way o↵ even after the
strides made by HMMs. Moving forward, a collection of George Washington letters
became the de-facto standard. This dataset comprises hundreds of manuscript pages
from the Library of Congress, handwritten by George Washington’s secretaries. (A
subset of this dataset is used in the evaluation portion of this project.)

In the mid-2000s, state-of-the-art HMM methods yielded word error rates around
50% on truly unrestricted datasets such as the George Washington collection. But
around this time, researchers began taking a new angle at the problem. Specifically,
projects focused on the process of “handwriting retrieval,” rather than attempting
complete transcriptions. Retrieval systems allow users to query a dataset of images
for a word, then scans the images for visual matches of that word. For example, [23]
presents a retrieval system that achieves 63% mean average precision scores on the
George Washington collection (this metric is discussed in section 2.5).

In [24], the word retrieval approach is formalized as a viable way to generate a
searchable index of handwritten papers. Their method of “word spotting” turns the
search problem into a clustering problem, where word images that are “closest” to the
query word are considered matches. word spotting is considered more thoroughly in
the following section, however it is crucial to note that this approach eliminated the
need for recognizing words before retrieval. In other words, rather than generating a
full index beforehand, matching was now done in real-time.

Building upon the success of word spotting techniques and HMMs, [25] takes a
step further and first detects handwritten characters in a word, then infers a word
using an ensemble of HMMs. This approach allowed the recognition of words that
were never seen during training, and established standards for character recognition
within the George Washington dataset.

By the time ensemble HMMs came onto the scene, neural networks were already
penetrating the field of handwriting recognition [26]. By 2010, techniques such as
bidirectional long short-term memory (BLSTM) were successfully applied to word

3

spotting [11] and outperformed other methods. Finally, recurrent neural networks
[27] eliminated the need for word segmentation in addition to improving state-of-the-
art performance on recognition tasks.

More recently, convolutional neural networks (CNNs) have become the state-of-
the-art approach for text recognition on handwritten documents [28, 29]. Many of
these approaches overlap text recognition methods mentioned in the previous section,
and in fact, recent neural networks are designed to recognize both printed text and
handwritten text.

Word Spotting on Damaged Handwritten Documents

In this subsection, the scope of related projects is narrowed down from all hand-
writing recognition systems, and only research related to word spotting on historical
documents is examined.

As previously mentioned, [24] formalized the idea of word spotting. However,
the concept was originally proposed in [30], which clustered similar words to be
annotated by users, and reported success for single-author documents with high-
quality scans of the handwriting. [31] acknowledges some of the main challenges
for historical documents: perfect line and word segmentation is nearly impossible,
and unconstrained word recognition is extremely di�cult. Although their proposed
“transcript mapping” method assumes a pre-existing transcript for the input image,
it introduces concepts for handling variable baseline position, line skew, character
size, and inter-line distance.

A fairly complete system for retrieving words in handwritten manuscripts is pre-
sented in [23]. Once again, the solution steers away from the challenging task of
full-on handwriting recognition, and instead focuses on retrieval of individual words.
The goal is to provide a way for users to search the document, not necessarily to
reveal its exact contents.

After performance improved on retrieval, around 2009, handwriting researchers re-
turned to the recognition task. As mentioned in the previous subsection, a segmentation-
free approach described in [25] utilizes character detection to improve state-of-the art
performance on the George Washington manuscript. Because it is character-based,
their system also recognizes words not seen in the training phase, the first such
achievement for handwritten cursive manuscripts.

The Parzival database [32], a medieval German text from the 13th century, also
became a popular evaluation benchmark, and [33] used it to demonstrate a system for
full-on recognition, although it relied on a predetermined vocabulary. The following
year, [10] matched state-of-the-art performance with a segmentation-free approach
to word spotting. By 2016, just as they had done for printed text recognition and
handwriting recognition, CNNs had set new standards for word spotting in historical
documents [29, 28, 34] .

Finally, several projects have explored interactive approaches to word annotation,
such as the one described in this paper. A familiar example is ReCAPTCHA [35],
a system which methodically crops pictures of book pages into images of individual
words, then, using many di↵erent users to label individual word images, it produces a

4

full transcript of the page and the book. Extending this method to take advantage of
machine learning techniques, [36] demonstrates a similar system for generating ground
truth for any dataset. Like ReCAPTCHA, it allows users to annotate manuscript
excerpts with labels for characters and words. However, the goal of the system is to
create training data for an ML-based word recognition or word spotting system.

1.2 Motivation

After the review of related work in printed text recognition, handwritten word recog-
nition, and handwritten word spotting, they may appear to be solved problems. The
explosion of machine learning research – in particular convolutional neural networks
– has led to drastic improvements in performance on these tasks, and many advance-
ments have even found their way to consumer products. For example, default software
on most PCs allows users to search within scans or photographs of printed typeface,
and note-taking software can now interpret penmanship that would be indecipherable
to many human readers.

However, the process of automatically transcribing damaged documents presents
a niche area of text recognition which is not addressed well by standard approaches.
Many historical documents, including those reviewed in this project, were meticu-
lously transcribed with legibility comparable to typeface, suggesting that automated
transcription would be straightforward. But over time, these documents have in-
curred damage of all di↵erent kinds. The characters originally may have looked like
typeface, but after hundreds of years of human handling, physical corrosion, chemical
decay, and other processes, reading certain parts of these documents is an arduous
task even for skilled textual analysts. For such cases, neither fully human transcrip-
tion nor fully automated transcription is ideal.

While fully manual transcription presents the most accurate solution, it is in-
credibly time-consuming for larger documents. Moreover, on damaged documents,
skilled papyrologists are required to decipher texts. This makes human transcription
prohibitively costly in terms of time and skilled personnel.

A fully automated transcription algorithm may successfully transcribe certain por-
tions of a historical document, but the damaged portions can distort the algorithm’s
output to the point of being unusable. This is especially true in cases where letters
are literally missing, as character-based algorithms are unable to handle incomplete
words.

An ideal solution would leverage automated transcription for the undamaged por-
tions, and allow a human reader to fill in any gaps. Figure ?? shows the potential
architecture of such a framework, which was presented in [1]. This architecture can
be referred to as semi-automated transcription, and this paper details a pipeline for
semi-automated transcription, blending the irreplicable abilities of the human eye
with the e�ciency and scalability of character recognition algorithms.

5

Figure 1.1: A schematic diagram from [1] for semi-automated transcription, designed
especially for resolving ambiguity. Although resolving ambiguity is not the focus of
my project, this diagram depicts a collaborative framework between machine learning
and human annotation.

1.3 Contributions

The methods used in this project borrow heavily from methods in the aforemen-
tioned research areas, especially keyword spotting [37, 27], word recognition [25], and
handwriting recognition [38, 39].

Nonetheless, the project makes two notable contributions to the area of handwrit-
ten text recognition, both concerned with the challenges of damaged words. First, a
framework for semi-automated transcription is detailed and implemented, in which
damaged words could be labeled by an expert and seamlessly integrated into an oth-
erwise automated word spotting process. The second contribution is an approach for
virtually restoring damaged or low-quality words into a representation that could be
recognized automatically.

An Interactive Approach to Word Spotting

A semi-automated approach to word spotting leverages user-provided labels of words
in a given document. Essentially, the system allows users to label an image, and then
uses that label to annotate similar word images. This essentially lets the user label a
cluster of images, while still allowing a user to correct an incorrect classification from
the clustering algorithm.

A Technique for Virtual Ink Restoration

To deal with the problem of damaged and distorted words, this project presents
a convolutional autoencoder (CAE) for restoring words with missing or incomplete
letters, which is successfully trained to capture and recreate the original appearance
of a damaged word. Not only does the recreation lead to accuracy improvements
for automated recognition, it also allows users to view an enhanced version of the
damaged manuscript.

6

Chapter 2 Methodology

2.1 Preprocessing

For two of the datasets used to evaluate the system (the George Washington and
Parzival datasets), segmented and binarized word images are already provided cour-
tesy of [40]. For the Wycli↵e dataset, several preprocessing steps must be taken to
get from raw images of the manuscript to segmented, binarized word images suitable
for word spotting.

Alignment

The first step, visualized in figure 2.1, involves rotating the original photographs so
that text columns are vertically aligned. Rotation varies depending on where the
page existed in the binding and which side of the book it was on.

Columns were cropped identically on each page, based on the assumption that
more precise cropping would take place in the line segmentation and word segmenta-
tion algorithms. The key in column cropping is to create images that are vertically
aligned and only contain text from one column. The amount of margin outside the
column need not be precise. However, to allow for key assumptions in the binarization
phase, the margin must not contain anything besides paper.

Binarization

Once the column images are cropped, the RGB image is flattened into a single
grayscale channel. The image is then inverted so that the text is white and the
background dark gray. Next, the image is thresholded to create a binarized repre-
sentation. Because lighting and coloring varies across manuscript pages, a simple
global threshold would lead to noisy and inconsistent background removal. Instead,
a threshold should be calculated individually for each page – a process referred to as
“adaptive thresholding.” Considering the nature of the data leads to a natural choice
of algorithm for this process.

Because the column image is assumed to only contain ink and paper, a histogram
of values in the column image should be bimodal (with the two peaks representing the
approximate value of an ink pixel and a paper pixel). Otsu’s binarization algorithm
[41] takes advantage of this bimodal distribution. It works by choosing a threshold
value in between the two peaks that minimizes the variance within the two “classes,”
an ideal method for these manuscript pages. The system uses Otsu’s thresholding
algorithm as implemented by OpenCV [42].

Line Segmentation

After column images are binarized, the next step is to split the column into its
individual lines and words.

7

Figure 2.1: A sample of the original photographs of the Wycli↵e New Testament
Manuscript. In the preprocessing phase, these images must be aligned and cropped
into separate columns.

The Wycli↵e New Testament is aligned and spaced with remarkable consistency,
and the segmentation technique takes advantage of this. A vertical projection profile
of a binarized page image is used to determine the approximate location of individual
lines of text, because the relative minimum values of the profile correspond to the
spaces in between lines of text. This is visualized in Figure ??.

Figure 2.2: The projection profile used to segment lines of text. To generate words,
an identical process

However, because lines are relatively wide (10-12 words), writing on some pages
is slightly slanted. Figure 2.3 illustrates the dilemma of horizontal segmentations.

To segment tilted lines of text, a line of best fit is generated across the words
in a given line. This is achieved by taking the coordinates of all the nonzero values
(i.e. values above the ink threshold) in the approximated horizontal text region, and
applying random sample consensus (RANSAC) [43] to generate a line that fits the
overall tilt of the given line. The resulting approximation eliminates most word cuto↵.

8

Figure 2.3: Illustrating the need for tilt during the line segmentation phase. Although
the column has been aligned vertically, perfectly horizontal approximations (above)
for line segmentation result in cuto↵ words. Tilted lines generated by the RANSAC
algorithm fit the slant of the text.

Word Segmentation

After a line is segmented, the line must be divided into individual words. A similar
process to line segmentation is used. Once a horizontal projection profile of a text
line is generated, the system applies a gaussian filter to eliminate noise in the dataset.
This helps ensure that local minimums in the profile correspond to word gaps.

Once the system finds local minimums in the profile, it checks whether their values
dip below a threshold. This threshold was calculated as follows:

mean(P)�
stdev(P)

2

where P is the horizontal projection profile of the text line.

Damage Simulation

The George Washington and Parzival datasets exist in fairly high quality. So, to
demonstrate the system’s ability to handle damaged datasets, simulated damage was
performed on the word images. A simple approach was used, and works as follows.

One half of the images in the dataset are chosen at random to be “damaged.”
Each of these images is treated with a random number of damage blocks, at least two
and at most six. Each damage block is a rectangle of random height and width, from
sixteen pixels to thirty pixels. The damage block is centered at a random nonzero
pixel in the image, and each pixel contained in the block is set to zero. An example
of damage simulation is shown in figure 2.4.

Figure 2.4: An original word image from the George Washington dataset (left), and
the same word after applying damage blocks to simulate ink deterioration (right).

Baseline Feature Extraction

The histogram of oriented gradients (HoG) feature was used as a baseline feature
for the images. Although more advanced features are available that result in better

9

accuracy, the goal was to apply a proven technique that would provide adequate
baseline performance. This portion of the system is modular, so an improved feature
extraction system would be straightforward to implement.

HoG features were extracted using a scikit-image implementation [44]. The results
in this paper were achieved using a HoG descriptor with 9 orientation bins, a cell size
of 16pixels x 16pixels, 2x2 cells per block, and L1 normalization.

2.2 Convolutional Autoencoder

The purpose of the Convolutional Autoencoder (CAE) [?] in this system is to learn
an encoded representation of word images, without the need for ground truth label.
After being trained, the CAE can be used to encode word images into features, as
well as to enhance damaged words before word spotting takes place.

The CAE is an unsupervised generative technique for learning a latent represen-
tation of input data. In this case, the autoencoder works on top of a convolutional
neural network and is trained using stochastic gradient descent, where the loss func-
tion is the cross-entropy between the output image and the input image. As a gen-
erative model, its job “is to somehow capture the dependencies between pixels” [46].
After proper training, the CAE should be able to take an input image, create an
encoded representation of that image, and then generate a similar image using only
the encoding.

For example, an idealized CAE trained on the MNIST dataset would learn an
encoding that captured the digits 0 to 9. This encoded layer of the network is referred
to as the latent variable, and the latent variables are used to decide which class of
output should be generated. If latent variables corresponded to a 1, the decoding
portion of the network would generate output that resembled a 1.

The CAE trains on each dataset separately, so that separate models are created
for the George Washington dataset, the Parzival dataset, and the Wycli↵e dataset. In
the evaluation chapter, these models generate “restored” versions of the word images
before word retrieval takes place, and results are compared to the non-restored word
image set.

The CAE was implemented using Keras [47], with TensorFlow [48] used as the
backend. The full architecture, visualized in figure 2.5, includes only three kinds of
layers: convolutional layers, pooling layers, and upsampling layers.

CAE for Feature Extraction

When using the CAE as a feature extractor, no changes are made to the network
architecture: the network receives an input image and performs the convolutional
filters just the same as a normal prediction. The only di↵erence is that the network
is pruned at the final convolutional layer, or the “encoded representation” layer. The
output of this layer is flattened into a 1-dimensional feature vector to be used in word
spotting.

10

Figure 2.5: A diagram of the convolutional autoencoder. The thin blue layers at
the far left and far right represent the input and output, respectively. Teal blocks
represent convolutional filters, white blocks represent pooling layers, and yellow blocks
represent upsampling layers.

CAE for Restoration

For damaged datasets, it is desirable to reconstruct the input to more closely resemble
their original form. In the case of damaged word images, restoration involves replacing
blank or missing pixels with expected values in a way that completes the shape of
the expected word. The computer vision community refers to this task of filling in
corrupted images as “inpainting.”

CAEs have previously been used for inpainting [49], and can be trained to do so
with a fairly simple modification: rather than using the same image as input and
ground truth, a damaged version of the ground truth is used as the input image.
Then, training for the CAE involves learning how to create the undamaged version
of the image based on the input/damaged version. This method is used to train a
network hereafter referred to as the restorative network, and results can be seen in
figure 3.3.

2.3 Word Retrieval

The current system employs a simple query-by-example method. This means that the
query requires a word image as input, rather than a string. Given a word image as
input, the query system calculates the feature vector (either HoG or CAE encoding)
and compares it to the feature vectors for all other word images. The results are
sorted by the cosine distance between vectors, and returned in order of proximity.

2.4 Providing Labels

Users can provide labels to word images in a simple graphical user interface which
displays the original word image (before inverting it and removing the background).
The interface, built using TKInter, allows a user to type in a label for the word image,
skip to the next word, flag the word image as requiring re-segmentation, or search for
other occurrences of the word. The label is stored in a simple file that also records
the coordinates of the word and whether segmentation was a�rmed.

11

Priority Queue

The order in which to request labels from users is a key concern. Two simple choices
would be to present words in order of appearance, or to present them randomly.

A more useful approach, leveraged by this system, allows users to label “interest-
ing” words. In some cases, that could mean the most frequently occurring words, and
in other cases, it could mean labeling the rare words. The general approach remains
the same: after features are extracted from word images, agglomerative clustering is
performed on the feature vectors, using the estimated number of unique words in the
data to determine how many clusters should be formed.

Once word images are clustered, labeling common words is a matter of labeling
words in the largest cluster. Words that occur only once (hapax legomenons) corre-
spond to clusters of size one. The system allows users to label words randomly, in
order of appearance, in order of frequency (common words first), or in reverse order
of frequency (rare words first).

2.5 Evaluation

Unique metrics are used to objectively evaluate word spotting methods. Most of these
metrics are primarily concerned with the precision of the results. In other words, when
a word is queried and the system provides a list of matching word images, the matches
are evaluated based on whether those results are correct, and not based on whether
it missed other matches in the data.

Precision at K

The precision at k (P@k) metric is one of the most widely used for evaluating word
spotting methods. P@k determines the precision for the k top retrieved words, or the
relevance of the k top results.

P@k =
| {relevant instances} \ {k retrieved instances} |

| {k retrieved instances} |

So if k=5, and a query for the word “october” returned three instances of “octo-
ber” and two instances of “octopus,” the P@5 score score would be 3

5 = 0.6 for that
query. This project uses P@5, as do most other word spotting papers from the past
decade, reviewed in [50].

Mean Average Precision

The mean average precision (MAP) is an e↵ective metric to holistically evaluate any
word spotting system. A recent review [50] of nearly 200 papers in word spotting
tracked the evaluation metric used in each paper, and conclusively found MAP to be
dominant. The formal definition for Average Precision is as follows:

AP =

Pn
k=1(P@k ⇥ rel(k))

| {relevant instances} |

12

MAP is simply the mean value of AP over all queries. The metric rewards systems
that properly sort results according to relevance. If two systems each have three
relevant results in the top five matches, they can still produce di↵erent scores. For
example, if one system puts the relevant results in the top three slots while the other
fails to do so, the former system will produce a better MAP score.

13

Chapter 3 Results

The evaluation phase sought to determine whether CAE encodings of word images
could be used for word spotting, and also if a CAE could reconstruct damaged words
so as to more accurately classify them.

3.1 Datasets

Three datasets were used to evaluate the CAE-based approach to word recognition
and ink restoration. The first two are benchmark datasets from the literature, and
the third is a custom scan of a publicly available document. Samples of all three
datasets are shown in figure 3.1.

Dataset Year Medium Words Unique Words

George Washington 1755 Ink on paper 4,894 1,471
Parzival 1200s Ink on parchment 23,478 4,934
Wycli↵e* 1388 Ink on parchment 310 143

Table 3.1: Summary table of the datasets used for evaluation. Note the Wycli↵e test
set is a small subset of the full Wycli↵e New Testament.

George Washington Dataset

The George Washington Dataset is enormously popular for evaluating handwriting
recognition. The subset of data used in this paper is from work done by [40], in
which authors provide word segmentation, ground truth, and normalized images for
20 pages of the George Washington letters.

Parzival Dataset

The Parzival database is a medieval German text from the 13th century which was
annotated and made publicly available by [32]. It includes nearly 50 manuscript
pages. The ink and parchment closely resemble the Wycli↵e documents, which is not
too surprising given their chronological proximity.

Wycli↵e Dataset

The Wycli↵e New Testament is a Middle English Bible translation from the 14th
century. Numerous copies of Wycli↵e’s New Testament survive to this day, but the
particular manuscript images used in this project were acquired in 2010 from...?

Challenges discussed in section 4.2 explain why this test set was relatively small
compared to the full Wycli↵e New Testament. However, the system does allow query-
by-example over the full manuscript.

14

Figure 3.1: Sample lines from the George Washington dataset (left), the Parzival
dataset (middle), and the Wycli↵e dataset (right).

Figure 3.2: Sample word images from the George Washington dataset (left), the
Parzival dataset (middle), and the Wycli↵e dataset (right).

3.2 Basic Word Spotting

The goal of the basic word spoting experiments was to determine whether the latent
variables in a CAE could adequately serve as features during word spotting. His-
togram of oriented gradients (HoG) is a popular feature extraction method for word
spotting [50]. Although other optimizations combined with advanced feature extrac-
tion produce better results, HoG is a su�cient benchmark with which to compare
alternate features.

Table 3.2 shows that CAE-encoded features outperform HoG features on all three
datasets. Word spotting precision at k=5 (P@5) and mean average precision (MAP)
over all queries are shown in the table. Although CAE features o↵er negligible im-
provement on the George Washington dataset, it is the decisive winner for the Parzival
and Wycli↵e sets.

Data Feature P@5 MAP

Original GW HoG 0.747 0.675
Original GW CAE Encoding 0.748 0.678
Original Parzival HoG 0.689 0.637
Original Parzival CAE Encoding 0.771 0.720
Original Wycli↵e HoG 0.631 0.584
Original Wycli↵e CAE Encoding 0.768 0.662

Table 3.2: Word Spotting Results

3.3 Classification on Damaged Datasest

The goal of experiments on damaged word images was twofold: first, to determine
whether CAE features were more suitable for damaged data, and second, to set a

15

Figure 3.3: On the top, samples of word images after simulated damage, from the
George Washington dataset (left) and the Parzival dataset (right). Respective output
from the reconstructive CAE is shown on the bottom.

baseline performance to be compared against in the following section.
Table 3.3 shows that CAE encoding outperforms HoG on the damaged datasets,

even on the George Washington dataset which saw little di↵erence between features
in the previous section.

Data Feature P@5 MAP

Damaged GW HoG 0.602 0.547
Damaged GW CAE Encoding 0.650 0.592
Damaged Parzival HoG 0.515 0.477
Damaged Parzival CAE Encoding 0.615 0.572

Table 3.3: Results for “Damaged” Datasets

3.4 Reconstruction Results

Finally, word spotting performance is evaluated on reconstructed word images. The
change represents the improvement over classification results on the original data
(Wycli↵e) or damaged data (George Washington and Parzival). Details on the
restorative CAE can be found in section 2.2, and discussion of these results can
be found in section 4.1.

Data Feature P@5 (change) MAP (change)

Reconstructed GW HoG 0.644 (+0.042) 0.583 (+0.036)
Reconstructed GW CAE Encoding 0.665 (+0.015) 0.604 (+0.012)
Reconstructed Parzival HoG 0.554 (+0.039) 0.512 (+0.035)
Reconstructed Parzival CAE Encoding 0.620 (+0.005) 0.577 (+0.005)
Reconstructed Wycli↵e HoG 0.873 (+0.242) 0.768 (+0.184)
Reconstructed Wycli↵e CAE Encoding 0.859 (+0.091) 0.755 (+0.093)

Table 3.4: Results for Reconstructed Data

16

Chapter 4 Conclusion

4.1 Findings

Besides demonstrating a semi-supervised approach to word spotting in historical doc-
uments, this project demonstrated that CAEs are useful at two points in the word
spotting pipeline. First, the encoded representation of word images can be used as
features for the matching process. Second, generative CAEs can be used to restore
damaged word images, producing an enhanced version for subsequent word spotting.

CAE for Feature Extraction

Results on three separate datasets showed conclusively that the encoded represen-
tation of word images outperformed HoG features for word spotting. This was the
case in both section 3.2 and 3.3, where the P@5 and MAP metrics were higher when
matching CAE features.

Results on the damaged datasets, shown in section 3.3, were especially clear. The
CAE features prove to be more robust to simulated damage, likely because the latent
variables capture high-level characteristics. If a small portion of the word image is
changed, the CAE is still able to encode those characteristics to some degree, and
the resulting feature vector will still reflect some similarity.

In contrast, HoG features change immediately after changes to a single pixel value.
Thus, the damage regions created a significantly di↵erent feature vector that fails to
capture the higher-level characteristics, leading to worse performance on the damaged
datasets.

CAE for Ink Restoration

A restorative CAE was shown to improve results on datasets with simulated damage,
as well as the Wycli↵e test set. The example reconstructions shown in figure 3.3
suggest that the network reconstructs images well enough to be visually recogniz-
able to a human, and results in 3.4 demonstrate that word spotting results improve
significantly on the reconstructed data.

This finding is immediately useful for word spotting systems that work on dam-
aged handwritten documents. The CAE can be understood as an enhancement to
the raw word images which lead to more useful feature extraction for word spot-
ting. Not only does the network “fill in” damaged portions of the word image with
plausible pixel values, it also causes di↵erent occurrences of the same word to more
closely resemble each other. This leads to more similar feature vectors between word
occurrences, and greater word spotting accuracy as the end result.

17

4.2 Challenges and Limitations

Although the word spotting system detailed in this paper demonstrably improves
recognition on damaged datasets, various challenges arose at certain parts of the
pipeline. Precise segmentation, ground truth collection, and query-by-example present
three challenges encountered which limit the final product.

Although segmentation-free approaches to word spotting have been gaining popu-
larity, this project assumed word segmentation. Specifically, the CAE assumed input
samples of a fixed dimension, and that each input sample would contain a single
word. For the George Washington and Parzival datasets, the segmentation phase
was already completed, but for the custom Wycli↵e dataset this was not the case.

The methods section details an algorithm which accurately finds lines of words.
After fine-tuning the thresholds and introducing gaussian smoothing to the projection
profile, this algorithm performed remarkably well on every page. However, the same
adjustments did not produce reliably accurate word segmentation. The space between
words varies enough that, unlike line segmentation, a global threshold is unsuitable.
Thus, the resulting word images for the Wycli↵e dataset often include more than one
word (when words were close together) or a partial word (when letters in a word were
far apart). This led to the “segmentation error” button in the GUI, which flags the
sample for re-segmentation.

Because automatic word segmentation could not be trusted, it proved impossible
to generate ground truth for the Wycli↵e dataset. Once the segmentation system
made a single error, each subsequent word in the transcript would be mapped to
the incorrect word image. To evaluate the system, manual segmentation of words
was performed on the first page of the manuscript to ensure that each word image
corresponded to the correct ground truth label.

Lastly, the semi-supervised nature of the system means query-by-text is unsup-
ported until at least one instance of the text has been labeled. The user can still
choose to search for matching word images of any word image encountered in the
labeling interface. This search, however, is a query-by-example approach, which is
less useful for textual analysis.

4.3 Future Work

Alternate Generative Models

Those exploring the use of CAEs for word spotting should investigate alternative
approaches to generative neural networks. The CAE relies on fairly simple statistical
models which can limit their performance. Generative Adversarial Networks (GANs)
[51] leverage a game-like training approach, while autoregressive models [52] aim
to learn a conditional distribution of the data. Although these di↵erent generative
approaches present their own unique challenges, compromising on attributes such as
training time and e�ciency can lead to better results in the long-term.

Copyright c� Jack Bandy, 2018.

18

Bibliography

[1] Mike Schaekermann, Edith Law, Alex C Williams, and William Callaghan. Re-
solvable vs. irresolvable ambiguity: A new hybrid framework for dealing with
uncertain ground truth. In 1st Workshop on Human-Centered Machine Learn-
ing at SIGCHI, 2016.

[2] J Mantas. An overview of character recognition methodologies. Pattern recogni-
tion, 19(6):425–430, 1986.

[3] VK Govindan and AP Shivaprasad. Character recognition?a review. Pattern
recognition, 23(7):671–683, 1990.

[4] MH Glauberman. Character recognition for business machines. Electronics,
29(2):132–136, 1956.

[5] Øivind Due Trier, Anil K Jain, and Torfinn Taxt. Feature extraction methods
for character recognition-a survey. Pattern recognition, 29(4):641–662, 1996.

[6] Simon Kahan, Theo Pavlidis, and Henry S Baird. On the recognition of printed
characters of any font and size. IEEE Transactions on pattern analysis and
machine intelligence, (2):274–288, 1987.

[7] Ray Smith. An overview of the tesseract ocr engine. In Document Analysis and
Recognition, 2007. ICDAR 2007. Ninth International Conference on, volume 2,
pages 629–633. IEEE, 2007.

[8] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end text
recognition with convolutional neural networks. In Pattern Recognition (ICPR),
2012 21st International Conference on, pages 3304–3308. IEEE, 2012.

[9] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Reading text in the wild with convolutional neural networks. International Jour-
nal of Computer Vision, 116(1):1–20, 2016.

[10] Marçal Rusiñol, David Aldavert, Ricardo Toledo, and Josep Lladós. E�cient
segmentation-free keyword spotting in historical document collections. Pattern
Recognition, 48(2):545–555, 2015.

[11] Kai Wang and Serge Belongie. Word spotting in the wild. In European Confer-
ence on Computer Vision, pages 591–604. Springer, 2010.

[12] Zohra Saidane and Christophe Garcia. Automatic scene text recognition us-
ing a convolutional neural network. In Workshop on Camera-Based Document
Analysis and Recognition, volume 1, 2007.

[13] Manolis Delakis and Christophe Garcia. text detection with convolutional neural
networks. In VISAPP (2), pages 290–294, 2008.

19

[14] Xu-Cheng Yin, Xuwang Yin, Kaizhu Huang, and Hong-Wei Hao. Robust text
detection in natural scene images. IEEE transactions on pattern analysis and
machine intelligence, 36(5):970–983, 2014.

[15] Isabelle Guyon, Lambert Schomaker, Réjean Plamondon, Mark Liberman, and
Stan Janet. Unipen project of on-line data exchange and recognizer bench-
marks. In Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision &
Image Processing., Proceedings of the 12th IAPR International. Conference on,
volume 2, pages 29–33. IEEE, 1994.

[16] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[17] Léon Bottou, Corinna Cortes, John S Denker, Harris Drucker, Isabelle Guyon,
Lawrence D Jackel, Yann LeCun, Urs A Muller, Edward Sackinger, Patrice
Simard, et al. Comparison of classifier methods: a case study in handwritten
digit recognition. In Pattern Recognition, 1994. Vol. 2-Conference B: Computer
Vision & Image Processing., Proceedings of the 12th IAPR International. Con-
ference on, volume 2, pages 77–82. IEEE, 1994.

[18] Ernst Kussul and Tatiana Baidyk. Improved method of handwritten digit recog-
nition tested on mnist database. Image and Vision Computing, 22(12):971–981,
2004.

[19] U-V Marti and Horst Bunke. Using a statistical language model to improve the
performance of an hmm-based cursive handwriting recognition system. In Hidden
Markov models: applications in computer vision, pages 65–90. World Scientific,
2001.

[20] Horst Bunke, Samy Bengio, and Alessandro Vinciarelli. O✏ine recognition of
unconstrained handwritten texts using hmms and statistical language models.
IEEE transactions on Pattern analysis and Machine intelligence, 26(6):709–720,
2004.

[21] A El-Yacoubi, Michel Gilloux, Robert Sabourin, and Ching Y. Suen. An
hmm-based approach for o↵-line unconstrained handwritten word modeling and
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(8):752–760, 1999.

[22] U-V Marti and Horst Bunke. The iam-database: an english sentence database
for o✏ine handwriting recognition. International Journal on Document Analysis
and Recognition, 5(1):39–46, 2002.

[23] Toni M Rath, R Manmatha, and Victor Lavrenko. A search engine for historical
manuscript images. In Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 369–376.
ACM, 2004.

20

[24] Tony M Rath and Rudrapatna Manmatha. Word spotting for historical docu-
ments. International Journal of Document Analysis and Recognition (IJDAR),
9(2-4):139–152, 2007.

[25] Nicholas R Howe, Shaolei Feng, and R Manmatha. Finding words in alphabet
soup: Inference on freeform character recognition for historical scripts. Pattern
Recognition, 42(12):3338–3347, 2009.

[26] Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. An application of
recurrent neural networks to discriminative keyword spotting. In International
Conference on Artificial Neural Networks, pages 220–229. Springer, 2007.

[27] Volkmar Frinken, Andreas Fischer, R Manmatha, and Horst Bunke. A novel
word spotting method based on recurrent neural networks. IEEE transactions
on pattern analysis and machine intelligence, 34(2):211–224, 2012.

[28] Zhuoyao Zhong, Weishen Pan, Lianwen Jin, Harold Mouchère, and Christian
Viard-Gaudin. Spottingnet: Learning the similarity of word images with convo-
lutional neural network for word spotting in handwritten historical documents.
In Frontiers in Handwriting Recognition (ICFHR), 2016 15th International Con-
ference on, pages 295–300. IEEE, 2016.

[29] Sebastian Sudholt and Gernot A Fink. Phocnet: A deep convolutional neural
network for word spotting in handwritten documents. In Frontiers in Handwrit-
ing Recognition (ICFHR), 2016 15th International Conference on, pages 277–
282. IEEE, 2016.

[30] Raghavan Manmatha, Chengfeng Han, and Edward M Riseman. Word spotting:
A new approach to indexing handwriting. In Computer Vision and Pattern
Recognition, 1996. Proceedings CVPR’96, 1996 IEEE Computer Society Confer-
ence on, pages 631–637. IEEE, 1996.

[31] Catalin I Tomai, Bin Zhang, and Venu Govindaraju. Transcript mapping for his-
toric handwritten document images. In Frontiers in Handwriting Recognition,
2002. Proceedings. Eighth International Workshop on, pages 413–418. IEEE,
2002.

[32] Andreas Fischer, Emanuel Indermühle, Horst Bunke, Gabriel Viehhauser, and
Michael Stolz. Ground truth creation for handwriting recognition in historical
documents. In Proceedings of the 9th IAPR International Workshop on Docu-
ment Analysis Systems, pages 3–10. ACM, 2010.

[33] Andreas Fischer, Micheal Baechler, Angelika Garz, Marcus Liwicki, and Rolf
Ingold. A combined system for text line extraction and handwriting recognition
in historical documents. In Document Analysis Systems (DAS), 2014 11th IAPR
International Workshop on, pages 71–75. IEEE, 2014.

21

[34] Praveen Krishnan, Kartik Dutta, and CV Jawahar. Deep feature embedding for
accurate recognition and retrieval of handwritten text. In Frontiers in Handwrit-
ing Recognition (ICFHR), 2016 15th International Conference on, pages 289–
294. IEEE, 2016.

[35] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. recaptcha: Human-based character recognition via web security measures.
Science, 321(5895):1465–1468, 2008.

[36] Ofer Biller, Abedelkadir Asi, Klara Kedem, Jihad El-Sana, and Itshak Dinstein.
Webgt: An interactive web-based system for historical document ground truth
generation. In Document Analysis and Recognition (ICDAR), 2013 12th Inter-
national Conference on, pages 305–308. IEEE, 2013.

[37] Arjun Sharma et al. Adapting o↵-the-shelf cnns for word spotting & recogni-
tion. In Document Analysis and Recognition (ICDAR), 2015 13th International
Conference on, pages 986–990. IEEE, 2015.

[38] Andreas Fischer, Ching Y Suen, Volkmar Frinken, Kaspar Riesen, and Horst
Bunke. A fast matching algorithm for graph-based handwriting recognition. In
International Workshop on Graph-Based Representations in Pattern Recognition,
pages 194–203. Springer, 2013.

[39] Théodore Bluche, Hermann Ney, and Christopher Kermorvant. Feature extrac-
tion with convolutional neural networks for handwritten word recognition. In
Document Analysis and Recognition (ICDAR), 2013 12th International Confer-
ence on, pages 285–289. IEEE, 2013.

[40] Andreas Fischer, Andreas Keller, Volkmar Frinken, and Horst Bunke. Lexicon-
free handwritten word spotting using character hmms. Pattern Recognition Let-
ters, 33(7):934–942, 2012.

[41] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

[42] Gary Bradski and Adrian Kaehler. Opencv. Dr. Dobb?s journal of software
tools, 3, 2000.

[43] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
In Readings in computer vision, pages 726–740. Elsevier, 1987.

[44] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu.
scikit-image: image processing in python. PeerJ, 2:e453, 2014.

[45] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

22

[46] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[47] François Chollet et al. Keras, 2015.

[48] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je↵rey
Dean, Matthieu Devin, Sanjay Ghemawat, Geo↵rey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In OSDI, volume 16,
pages 265–283, 2016.

[49] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with
deep neural networks. In Advances in neural information processing systems,
pages 341–349, 2012.

[50] Angelos P Giotis, Giorgos Sfikas, Basilis Gatos, and Christophoros Nikou. A sur-
vey of document image word spotting techniques. Pattern Recognition, 68:310–
332, 2017.

[51] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[52] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. arXiv preprint arXiv:1601.06759, 2016.

23

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Related Work
	1.2 Motivation
	1.3 Contributions

	2 Methodology
	2.1 Preprocessing
	2.2 Convolutional Autoencoder
	2.3 Word Retrieval
	2.4 Providing Labels
	2.5 Evaluation

	3 Results
	3.1 Datasets
	3.2 Basic Word Spotting
	3.3 Classification on Damaged Datasest
	3.4 Reconstruction Results

	4 Conclusion
	4.1 Findings
	4.2 Challenges and Limitations
	4.3 Future Work

	Bibliography
	Vita

